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Abstract

A design procedu~e has been developed to design lumped/distributed ladder networks. The necessary and

sufficient conditions on the coefficients of the characteristic polynomial have been obtained and a suitable lc)w-
pass to band-pass frequency transformation has been developed. The procedure was then applied to design a micro-

wave filter and the results show good agreement with the theoretical predictions.

Introduction

General networks containing lumped and distributed
elements have been dealt with by numerous authors , The

work described in this paper deals with ladder networks

and the main aim is to obtain a design procedure to

realise practical circuits. The procedure has been

applied to various examples with successful results.

The advantage of these circuits over circuits

containing distributed elements orly is that the
response in the harmonic frequency bands can be greatly
reduced and the advantage over circuits containing

lumped elements only is that a greater rate of cut-off

can be achieved for the same order, because Of the
presence of finite transmission zeros,

Theoretical Analysis—

A two variable prototype ladder network is shown

in Figu~e 1. The impedances of all the series elements
are proportional to the frequency variable s = utju,

and the admittances of all the shunt elements are pro-
portional to another frequency variable k . Z+jQ. The

variables s and k are related by ), = f(s) and in
general f(s) can take various forms. In a prototype

lumped/distributed network all the series elements are
inductors and all the shunt elements are open-circuited

lengths of commensurate transmission lines. In this

case f(s) ❑ tanh Tns where Tn is the delay on each

line.

The input impedance of the network in Figure

given by
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for n even.

Similar forms can be obtained for the input

impedance of the network in Figure? lb,

Without loss of generality the constants co and do

can be normalised to

1
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The necessary and sufficient conditions that the

required continued fraction form exists are given by
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Conditions (5) together

the 2n+l coefficients c
could be chosen and the

with (3) form ntl conditions on

and d. Thus n coefficients

remaining n+l coefficients are

then determined. In other words-there are n conditions

that can be imDosed on the resDonse of the network as

in the case of a lumped ladder network.

The input scattering parameter S1l(S,A) can be

obtained n+l n-1——

ao+a~s+a11ta2sl+a~sA2+a3s2At. .ans 212

S1l(S,A)=
n+l~.—
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for n odd, and a similar expression can be obtained

n even.

(6)

for

All the odd terms except the last are split intn

two terms and the total number of either the a or th<?

b constants is ~ for n odd and ~ for n even,

The transfer scattering parameter S21(S,A) is

given by

2-

S21(S, A) =
n= ‘7).— —
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22

The relations between the b constants in (7) and the c

and d constants in (1)

b = ci+d. for
i 1

b; ❑ d.
1

I

for

bi = Ci

The b constants in the
satisfv the conditions

are given by

i even

(8)

i odd

characteristic polynomial must
in (8) and the c and d constants

c ❑R2andd.1
o

(3)
o

Conditions must exist on the constants c and d in
order that the impedance function can be expanded in

the continued fraction form with positive coefficients

in tur~ must satisfy the conditions in (5).

Er. que..y T~ans Eomat ion

After the low-pass prototype network is obtained a

frequency transformation step is required such that the
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relation

Hn(un, Qn) = H(u, 0) (9)

is satisfied, where the subscript n refers to the nor-

malised quantities.

For the lumped/distributed case we also have

0= ❑ tanTnwn and Q ❑ tanTw (lo)

To obtain the required transformation the relations
between the normalised and denormalised frequencies

are

w ❑ fl(u) and Qn = f2(Q)
n

(11)

Furthermore, if the resulting network is to be

realizable both fl(m) and f2(fl) must be positive–real

functions.

From (10) and (11) we have

f2(~) . tan[Tn (fl(o))] ❑ tan [Tnfl (~ tan -%)] (12)

Thus in order that (9) is satisfied the functions

fl and f2 are related by (12). It is not always pos-

sible to obtain positive-real functions f
1

and f2 such

that (12) is satisfied and (9) is satisfied for all

values of w,

Frequency sealing. Scaling the frequency by a factor

nf can be easily achieved by the relations

w ❑ ‘fun (13)
k . tan(nfTnU) = tanTw

All the values of the series inductors are

divided by nf and the commensurate delay T of the

scaled network is n T
f n“

In this case both (9) and (12) are satisfied and

the transformation is valid for all values of m,

Low-pass to band–pass transformation. In this case it

is not possible to find two positive-real functions f,
J.

and f2 to satisfy the above conditions. The alterna-

tive is to satisfy (9) at a number of discrete
frequencies. This could be achieved by choosing

where u nc is the normalised cut-off frequency, w: ❑

‘l”2’ ‘1
and U2 are the cut–off frequencies of the band-

pass response, ~nc . tanT w ~1 = tanTwl, f12 . tanTu2
n n’

and Q2 = Q Q
12 ❑ (tanTuo)2.

0

The condition Qz . ~ ~ will determine the re–
0 12

quired value of T, the commensurate delay of the band-
pass network. This is obtained by solving the equa-

tion

tanTml tanTu2 = tan2To 0 (15)

There are several solutions to (15). Each
solution will give a set of transformed impedance

values and the final choice of T will be such that the
most practical impedance values are obtained.

The resulting impedance transformations of the
circuit elements are shown in Figure 2.

The above transformation ensures that (9)is satis-

fied only at (Wn.O, W=wo), (Un.Unc, W=wl) and (wn.u
nc’

w=m2) .

The normalised cut-off frequency Unc can be chosen

as either the 3dB cut-off frequency or the transmission

zero frequency or any other convenient value ,

Practical Examnles

Example I: A fifth order low-pass equiripple filter was

designed with 0.5dB pass-band ripple and a cut-off

frequency of 3GHz.

First the b constants were determined for the

normalised prototype with Tn=l.2 to satisfy the equi–

ripple criteria. The circuit elements were then

calculated for the required filter.

Figure 3 shows the final circuit. The theoretical

response and measured points are shown in Figure 4.

Example II: A lumped/distributed third order, maximally

flat, ladder filter is designed to meet the following
specifications .

R1 ❑ R2 ❑ 50G. and the 3dB cut-off frequencies are

at 2.823GHz and 3.183GHz (f. = 3GHz).

The b constants were determined for Tn.l and the ele-

ments of the low-pass prototype were then calculated.

Equation (15) was then solved for T and the value

of T for the most practical values of circuit elements
was found to be T= O.20485ns.

Figure 5 shows the final band-pass circuit and a

photograph of the actual filter constructed in micro-

strip form. The lumped inductance was wire wound and

the lumped capacitor had an interdigital form.

Figure 6 shows the theoretical response of the

filter and the measured points.

The main disadvantage of the lumped/distributed

circuit is the practical difficulties encountered in

designing and producing the lumped elements at micro–
wave frequencies. Various empirical formulae

existl’2 for the design of these elements but none are

accurate enough for the accurate prediction of their
performance. Furthermore, lumped elements produce
higher losses than distributed ones. The lumped ele-
ments are believed to be responsible for the insertion

loss at the center frequency of the filter and for the
slight shift in the cut-off frequencies. The measured
attenuations in the harmonic bands are generally lower

than the theoretical values; this is thought to be due

to the coupling between the elements which exists in

microstrip circuits.

Conclusion

A successful design procedu~e has been developed
for the design of lumped/distributed ladder networks.
These networks have useful applications in the lower

microwave range where the lumped elements can have
reasonable performance. More accurate design procedure
for lumped elements will be required if high order fil-
ters of this type are to be designed.

References

1. C.S.R. Aitchinson, et al, ‘!Lumped-circuit Elements
at Microwave Frequencies,~! IEEE Trans. , MTT, pp.
928=937, 1971.

306



M CaultQn, !!The Lumped Element Approach tO Micro-2. .

wave Integrated Circuits, ” &rowave Journal, pp.
51-58, 1970.

,f’j$---+-+,~R2
(a) n odd n even

‘I~&~--j~}~R2

(b)
n odd n even

Fig. l-Lumped/distributed ladder network.

‘1 ❑ ‘2 = 50Q

T ❑ 0.06366 nS

z ❑ 56.37Q Z02 = 34. I+4Q
01

L = 2.433 nH
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Fig. 3-Final circuit of f’ifth order

filter (Example I ) .

~u
‘1 = R2 ❑ 50f2

T ❑ 0.20485 ns

z = 44.2fl Z02 = 57.5Q01
L ❑ 44.2 nH C . 0.06 pF

Fig. 5–Final band–pass circuit
(Example II) .
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Fig. 2-Low-pass to band-pass trans-

formations .
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Fig. 4-Theoretical response and measured

points of fifth order Chebyshev

filter (Example I).
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Fig. 6-Theoretical response and measured
points of thivd ord.~ maximally
flat band-pass filter (Example II).
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