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Abstract
A design procedure has been developed to design lumped/distributed ladder networks. The necessary and

sufficient conditions on the coefficients of the characteristic polynomial have been obtained and a suitable low-
pass to band-pass frequency transformation has been developed. The procedure was then applied to design a micro-

wave filter and the results show good agreement with the theoretical predictions.

Introduction

General networks containing lumped and distributed
elements have been dealt with by numerous authors. The
work described in this paper deals with ladder networks
and the main aim is to obtain a design procedure to
realise practical circuits. The procedure has been
applied to various examples with successful results.

The advantage of these circuits over circuits
containing distributed elements orly is that the
response in the harmonic frequency bands can be greatly
reduced and the advantage over circuits containing
lumped elements only is that a greater rate of cut-off
can be achieved for the same order because of the
presence of finite transmission zeros.

Theoretical Analysis

A two variable prototype ladder network is shown
in Figure 1. The impedances of all the series elements
are proportional to the frequency variable s = o+jw,
and the admittances of all the shunt elements are pro-
portional to another fregquency variable A = I+jf0. The
variables s and A are related by A = £(s) and in
general f(s) can take various forms. In a prototype
lumped/distributed network all the series elements are
inductors and all the shunt elements are open-circuited
lengths of commensurate transmission lines. In this
case f(s) = tanh Tns where Tn is the delay on each

line.

The input impedance of the network in Figure la is
given by
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Similar forms can be obtained for the input
impedance of the network in Figure 1b.
Without loss of generality the constants , and do

can be normalised to
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Conditions must exist on the constants ¢ and d in
order that the impedance function can be expanded in

the continued fraction form with positive coefficients
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The necessary and sufficient conditions that the
required continued fraction form exists are given by

Cldl = cod2 + c2do
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Conditions (5) together with (3) form n+l conditions on
the 2n+l coefficients ¢ and d. Thus n coefficients
could be chosen and the remaining n+l coefficients are
then determined. In other words there are n conditions
that can be imposed on the response of the network as
in the case of a lumped ladder network.
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for n odd, and a similar expression can be obtained for
n even.

All the odd terms except the last are split into
two terms and the total number of either the a or the

b constants is 3%;1 for n odd and 3%;2

for n even.

The transfer scattering parameter SQl(s,A) is
given by
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The relations between the b constants in (7) and the ¢
and d constants in (1) are given by
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The b constants in the characteristic polynomial must
satisfy the conditions in (8) and the c and d constants
in turn must satisfy the conditions in (5).

Frequency Transformation

After the low-pass prototype network is obtained a
frequency transformation step is required such that the
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relation

Hn(mn, Q) = Hlw, R) (9)
is satisfied, where the subscript n refers to the nor-
malised quantities.

For the lumped/distributed case we also have

€ = tanT w_ and Q = tanTw (10)
n nn

To obtain the required transformation the relations

between the normalised and denormalised frequencies
are

w = fl(w) and Qn = f2(9) (1)

Furthermore, if the resulting network is to be
realisable both fl(w) and fQ(Q) must be positive-real

functions.
From (10) and (11) we have
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Thus in order that (9) is satisfied the functions

fl and f2 are related by (12). It is not always pos-

sible to obtain positive-real functions fl and f2 such

that (12) is satisfied and (9) is satisfied for all
values of w.

Frequency scaling. Scaling the frequency by a factor

n. can be easily achieved by the relations

w =

By (13)

A= tan(nanw) = tanTw
All the values of the series inductors are
divided by ne and the commensurate delay T of the

scaled network is n_.T .
f'n

In this case both (9) and (12) are satisfied and
the transformation is valid for all values of w.

Low-pass to band-pass transformation. In this case it
is not possible to find two positive-real functions f

1

and f2 to satisfy the above conditions. The alterna-

tive is to satisfy (9) at a number of discrete

frequencies. This could be achieved by choosing
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where W is the normalised cut-off frequency, wé =

Wy Wty and w, are the cut-off frequencies of the band-
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The condition Qg = Qlﬂz will determine the re-

quired value of T, the commensurate delay of the band-
pass network. This is obtained by solving the equa-
tion

tanTw, tanTw (15)

- 2
1 5 = tan Two

There are several solutions to (15). Each
solution will give a set of transformed impedance
values and the final choice of T will be such that the
most practical impedance values are obtained.

The resulting impedance transformations of the
circuit elements are shown in Figure 2.

The above transformation ensures that (9)is satis-
fied only at (wnzo, wzwo), (wnzwnc, w:wl) and (wn:wnc,

w:w2).
The normalised cut-off frequency w . can be chosen

as either the 3dB cut-off frequency or the transmission
zero frequency or any other convenient value.

Practical Examples

Example I: A fifth order low-pass equiripple filter was
designed with 0.5dB pass-band ripple and a cut-off
frequency of 3GHz.

First the b constants were determined for the
normalised prototype with Tn:l.Q to satisfy the equi-
ripple criteria. The circuit elements were then
calculated for the required filter.

Figure 3 shows the final circuit. The theoretical
response and measured points are shown in Figure 4.

Example II: A lumped/distributed third order, maximally

flat, ladder filter is designed to meet the following

specifications.
Rl = R2 = 500 and the 3dB cut-off frequencies are
at 2.823GHz and 3.183GHz (fo = 3GHz).

The b constants were determined for Tn:l and the ele-

ments of the low-pass prototype were then calculated.

Equation (15) was then solved for T and the value
of T for the most practical values of circuit elements
was found to be T=0.20485ns.

Figure 5 shows the final band-pass circuit and a
photograph of the actual filter constructed in micro-
strip form. The lumped inductance was wire wound and
the lumped capacitor had an interdigital form.

Figure 6 shows the theoretical response of the
filter and the measured points.

The main disadvantage of the lumped/distributed
circuit is the practical difficulties encountered in
designing and producing the lumped elements at micro-
wave frequencies. Various empirical formulae

existl’2 for the design of these elements but none are
accurate enough for the accurate prediction of their
performance. Furthermore, lumped elements produce
higher losses than distributed ones. The lumped ele-
ments are believed to be responsible for the insertion
loss at the center frequency of the filter and for the
slight shift in the cut-off frequencies. The measured
attenuations in the harmonic bands are generally lower
than the theoretical values; this is thought to be due
to the coupling between the elements which exists in
microstrip circuits.

Conclusion

A successful design procedure has been developed
for the design of lumped/distributed ladder networks.
These networks have useful applications in the lower
microwave range where the lumped elements can have
reasonable performance. More accurate design procedure
for lumped elements will be required if high order fil-
ters of this type are to be designed.
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Fig. l-Lumped/distributed ladder network.
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Fig. 3-Final circuit of Ffifth order
filter (Example I).
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Fig. 5-Final band-pass circuit
(Example II).
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Fig. 4-Theoretical response and measured
points of fifth order Chebyshev
filter (Example I).
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Fig. 6-Theoretical response and measured
points of third order maximally
flat band-pass filter (Example II).
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